Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Radiol Med ; 129(3): 411-419, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38319494

RESUMEN

PURPOSE: Lung cancer screening (LCS) by low-dose computed tomography (LDCT) demonstrated a 20-40% reduction in lung cancer mortality. National stakeholders and international scientific societies are increasingly endorsing LCS programs, but translating their benefits into practice is rather challenging. The "Model for Optimized Implementation of Early Lung Cancer Detection: Prospective Evaluation Of Preventive Lung HEalth" (PEOPLHE) is an Italian multicentric LCS program aiming at testing LCS feasibility and implementation within the national healthcare system. PEOPLHE is intended to assess (i) strategies to optimize LCS workflow, (ii) radiological quality assurance, and (iii) the need for dedicated resources, including smoking cessation facilities. METHODS: PEOPLHE aims to recruit 1.500 high-risk individuals across three tertiary general hospitals in three different Italian regions that provide comprehensive services to large populations to explore geographic, demographic, and socioeconomic diversities. Screening by LDCT will target current or former (quitting < 10 years) smokers (> 15 cigarettes/day for > 25 years, or > 10 cigarettes/day for > 30 years) aged 50-75 years. Lung nodules will be volumetric measured and classified by a modified PEOPLHE Lung-RADS 1.1 system. Current smokers will be offered smoking cessation support. CONCLUSION: The PEOPLHE program will provide information on strategies for screening enrollment and smoking cessation interventions; administrative, organizational, and radiological needs for performing a state-of-the-art LCS; collateral and incidental findings (both pulmonary and extrapulmonary), contributing to the LCS implementation within national healthcare systems.


Asunto(s)
Neoplasias Pulmonares , Cese del Hábito de Fumar , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/prevención & control , Detección Precoz del Cáncer/métodos , Tomografía Computarizada por Rayos X/métodos , Cese del Hábito de Fumar/métodos , Pulmón , Tamizaje Masivo/métodos
2.
J Clin Med ; 13(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38337490

RESUMEN

Hypersensitivity pneumonitis (HP) is a diffuse parenchymal lung disease (DLPD) characterized by complex interstitial lung damage with polymorphic and protean inflammatory aspects affecting lung tissue targets including small airways, the interstitium, alveolar compartments and vascular structures. HP shares clinical and often radiological features with other lung diseases in acute or chronic forms. In its natural temporal evolution, if specific therapy is not initiated promptly, HP leads to progressive fibrotic damage with reduced lung volumes and impaired gas exchange. The prevalence of HP varies considerably worldwide, influenced by factors like imprecise disease classification, diagnostic method limitations for obtaining a confident diagnosis, diagnostic limitations in the correct processing of high-resolution computed tomography (HRCT) radiological parameters, unreliable medical history, diverse geographical conditions, heterogeneous agricultural and industrial practices and occasionally ineffective individual protections regarding occupational exposures and host risk factors. The aim of this review is to present an accurate and detailed 360-degree analysis of HP considering HRCT patterns and the role of the broncho-alveolar lavage (BAL), without neglecting biopsy and anatomopathological aspects and future technological developments that could make the diagnosis of this disease less challenging.

3.
Oral Maxillofac Surg ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261079

RESUMEN

PURPOSE: To evaluate the clinical and aesthetic outcome of percutaneous injection of sclerosant agents to treat head and neck cystic malformations (HNCM) and to assess their recurrence rate based on histology and site. METHODS: Fifty-four subjects (mean age 46 years) with HNCM treated by percutaneous injection of sclerosant agents between January and December 2017 were included. Imaging and clinical data before and after the procedure were collected. Quality of Life Index, Pain Visual Analogue Scale, and Aesthetic Scale scores were measured to assess clinical and aesthetic outcomes. A size reduction of ≥ 70% assessed through the visual scale was considered significant. RESULTS: Of the 54 HNCM, there were 26 (48%) lymphatic malformations (LM), 13 (24%) salivary epithelial duct cysts of the parotid gland, 12 (22%) salivary mucoceles, and 3 (5%) branchial cysts. A significant size reduction and a satisfactory clinical-aesthetic outcome were observed in all types of LM. The number of reinterventions was significantly associated with the number of lesions (p < 0.001). The lowest number of interventions was observed in macrocystic lymphatic malformations (average of 1.2 interventions). All salivary epithelial duct cysts showed a significant reduction in size, a satisfactory clinical-aesthetic outcome, and an average of 1.16 interventions per patient. Mucoceles had a worse response, with only 3/14 patients showing a satisfactory and long-lasting clinical outcome (average of 1.16 interventions). Treatment of branchial cysts showed the worst outcome with a limited clinical response (3/3). CONCLUSION: Percutaneous injection of sclerosant agents may be considered as a first-line treatment for LM and salivary epithelial duct cysts.

4.
Lung Cancer ; 185: 107387, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37801898

RESUMEN

BACKGROUND: This study explored female and male overall mortality and lung cancer (LC) survival in two LC screening (LCS) populations, focusing on the predictive value of coronary artery calcification (CAC) at baseline low-dose computed tomography (LDCT). METHODS: This retrospective study analysed data of 6495 heavy smokers enrolled in the MILD and BioMILD LCS trials between 2005 and 2016. The primary objective of the study was to assess sex differences in all-cause mortality and LC survival. CAC scores were automatically calculated on LDCT images by a validated artificial intelligence (AI) software. Sex differences in 12-year cause-specific mortality rates were stratified by age, pack-years and CAC score. RESULTS: The study included 2368 females and 4127 males. The 12-year all-cause mortality rates were 4.1 % in females and 7.7 % in males (p < 0.0001), and median CAC score was 8.7 vs. 41 respectively (p < 0.0001). All-cause mortality increased with rising CAC scores (log-rank test, p < 0.0001) for both sexes. Although LC incidence was not different between the two sexes, females had lower rates of 12-year LC mortality (1.0 % vs. 1.9 %, p = 0.0052), and better LC survival from diagnosis (72.3 % vs. 51.7 %; p = 0.0005), with a similar proportion of stage I (58.1 % vs. 51.2 %, p = 0.2782). CONCLUSIONS: Our findings demonstrate that female LCS participants had lower rates of all-cause mortality at 12 years and better LC survival than their male counterparts, with similar LC incidence rates and stage at diagnosis. The lower CAC burden observed in women at all ages might contribute to explain their lower rates of all-cause mortality and better LC survival.


Asunto(s)
Enfermedad de la Arteria Coronaria , Neoplasias Pulmonares , Humanos , Masculino , Femenino , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiología , Estudios Retrospectivos , Detección Precoz del Cáncer/métodos , Inteligencia Artificial , Factores de Riesgo
5.
Invest Radiol ; 58(12): 882-893, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37493348

RESUMEN

OBJECTIVES: The aim of this study was to evaluate the severity of COVID-19 patients' disease by comparing a multiclass lung lesion model to a single-class lung lesion model and radiologists' assessments in chest computed tomography scans. MATERIALS AND METHODS: The proposed method, AssessNet-19, was developed in 2 stages in this retrospective study. Four COVID-19-induced tissue lesions were manually segmented to train a 2D-U-Net network for a multiclass segmentation task followed by extensive extraction of radiomic features from the lung lesions. LASSO regression was used to reduce the feature set, and the XGBoost algorithm was trained to classify disease severity based on the World Health Organization Clinical Progression Scale. The model was evaluated using 2 multicenter cohorts: a development cohort of 145 COVID-19-positive patients from 3 centers to train and test the severity prediction model using manually segmented lung lesions. In addition, an evaluation set of 90 COVID-19-positive patients was collected from 2 centers to evaluate AssessNet-19 in a fully automated fashion. RESULTS: AssessNet-19 achieved an F1-score of 0.76 ± 0.02 for severity classification in the evaluation set, which was superior to the 3 expert thoracic radiologists (F1 = 0.63 ± 0.02) and the single-class lesion segmentation model (F1 = 0.64 ± 0.02). In addition, AssessNet-19 automated multiclass lesion segmentation obtained a mean Dice score of 0.70 for ground-glass opacity, 0.68 for consolidation, 0.65 for pleural effusion, and 0.30 for band-like structures compared with ground truth. Moreover, it achieved a high agreement with radiologists for quantifying disease extent with Cohen κ of 0.94, 0.92, and 0.95. CONCLUSIONS: A novel artificial intelligence multiclass radiomics model including 4 lung lesions to assess disease severity based on the World Health Organization Clinical Progression Scale more accurately determines the severity of COVID-19 patients than a single-class model and radiologists' assessment.


Asunto(s)
COVID-19 , Humanos , Inteligencia Artificial , Estudios Retrospectivos , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Progresión de la Enfermedad
6.
Respir Res ; 24(1): 126, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161569

RESUMEN

Micro-computed tomography (µCT)-based imaging plays a key role in monitoring disease progression and response to candidate drugs in various animal models of human disease, but manual image processing is still highly time-consuming and prone to operator bias. Focusing on an established mouse model of bleomycin (BLM)-induced lung fibrosis we document, here, the ability of a fully automated deep-learning (DL)-based model to improve and speed-up lung segmentation and the precise measurement of morphological and functional biomarkers in both the whole lung and in individual lobes. µCT-DL whose results were overall highly consistent with those of more conventional, especially histological, analyses, allowed to cut down by approximately 45-fold the time required to analyze the entire dataset and to longitudinally follow fibrosis evolution and response to the human-use-approved drug Nintedanib, using both inspiratory and expiratory µCT. Particularly significant advantages of this µCT-DL approach, are: (i) its reduced experimental variability, due to the fact that each animal acts as its own control and the measured, operator bias-free biomarkers can be quantitatively compared across experiments; (ii) its ability to monitor longitudinally the spatial distribution of fibrotic lesions, thus eliminating potential confounding effects associated with the more severe fibrosis observed in the apical region of the left lung and the compensatory effects taking place in the right lung; (iii) the animal sparing afforded by its non-invasive nature and high reliability; and (iv) the fact that it can be integrated into different drug discovery pipelines with a substantial increase in both the speed and robustness of the evaluation of new candidate drugs. The µCT-DL approach thus lends itself as a powerful new tool for the precision preclinical monitoring of BLM-induced lung fibrosis and other disease models as well. Its ease of operation and use of standard imaging instrumentation make it easily transferable to other laboratories and to other experimental settings, including clinical diagnostic applications.


Asunto(s)
Aprendizaje Profundo , Fibrosis Pulmonar , Animales , Humanos , Ratones , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/tratamiento farmacológico , Microtomografía por Rayos X , Reproducibilidad de los Resultados , Bleomicina/toxicidad , Modelos Animales de Enfermedad
8.
Eur J Radiol ; 161: 110760, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36878153

RESUMEN

PURPOSE: To compare Low-Dose Computed Tomography (LDCT) with four different Ultra-Low-Dose Computed Tomography (ULDCT) protocols for PN classification according to the Lung Reporting and Data System (LungRADS). METHODS: Three hundred sixty-one participants of an ongoing lung cancer screening (LCS) underwent single-breath-hold double chest Computed Tomography (CT), including LDCT (120kVp, 25mAs; CTDIvol 1,62 mGy) and one ULDCT among: fully automated exposure control ("ULDCT1"); fixed tube-voltage and current according to patient size ("ULDCT2"); hybrid approach with fixed tube-voltage ("ULDCT3") and tube current automated exposure control ("ULDCT4"). Two radiologists (R1, R2) assessed LungRADS 2022 categories on LDCT, and then after 2 weeks on ULDCT using two different kernels (R1: Qr49ADMIRE 4; R2: Br49ADMIRE 3). Intra-subject agreement for LungRADS categories between LDCT and ULDCT was measured by the k-Cohen Index with Fleiss-Cohen weights. RESULTS: LDCT-dominant PNs were detected in ULDCT in 87 % of cases on Qr49ADMIRE 4 and 88 % on Br49ADMIRE 3. The intra-subject agreement was: κULDCT1 = 0.89 [95 %CI 0.82-0.96]; κULDCT2 = 0.90 [0.81-0.98]; κULDCT3 = 0.91 [0.84-0.99]; κULDCT4 = 0.88 [0.78-0.97] on Qr49ADMIRE 4, and κULDCT1 = 0.88 [0.80-0.95]; κULDCT2 = 0.91 [0.86-0.96]; κULDCT3 = 0.87 [0.78-0.95]; and κULDCT4 = 0.88 [0.82-0.94] on Br49ADMIRE 3. LDCT classified as LungRADS 4B were correctly identified as LungRADS 4B at ULDCT3, with the lowest radiation exposure among the tested protocols (median effective doses were 0.31, 0.36, 0.27 and 0.37 mSv for ULDCT1, ULDCT2, ULDCT3, and ULDCT4, respectively). CONCLUSIONS: ULDCT by spectral shaping allows the detection and characterization of PNs with an excellent agreement with LDCT and can be proposed as a feasible approach in LCS.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Detección Precoz del Cáncer/métodos , Dosis de Radiación , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
9.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36765835

RESUMEN

AIM: To examine the role of [18F]FDG PET/CT for assessing response to immunotherapy in patients with some solid tumors. METHODS: Data recorded in a multicenter (n = 17), retrospective database between March and November 2021 were analyzed. The sample included patients with a confirmed diagnosis of a solid tumor who underwent serial [18F]FDG PET/CT (before and after one or more cycles of immunotherapy), who were >18 years of age, and had a follow-up of at least 12 months after their first PET/CT scan. Patients enrolled in clinical trials or without a confirmed diagnosis of cancer were excluded. The authors classified cases as having a complete or partial metabolic response to immunotherapy, or stable or progressive metabolic disease, based on a visual and semiquantitative analysis according to the EORTC criteria. Clinical response to immunotherapy was assessed at much the same time points as the serial PET scans, and both the obtained responses were compared. RESULTS: The study concerned 311 patients (median age: 67; range: 31-89 years) in all. The most common neoplasm was lung cancer (56.9%), followed by malignant melanoma (32.5%). Nivolumab was administered in 46.3%, and pembrolizumab in 40.5% of patients. Baseline PET and a first PET scan performed at a median 3 months after starting immunotherapy were available for all 311 patients, while subsequent PET scans were obtained after a median 6, 12, 16, and 21 months for 199 (64%), 102 (33%), 46 (15%), and 23 (7%) patients, respectively. Clinical response to therapy was recorded at around the same time points after starting immunotherapy for 252 (81%), 173 (56%), 85 (27%), 40 (13%), and 22 (7%) patients, respectively. After a median 18 (1-137) months, 113 (36.3%) patients had died. On Kaplan-Meier analysis, metabolic responders on the first two serial PET scans showed a better prognosis than non-responders, while clinical response became prognostically informative from the second assessment after starting immunotherapy onwards. CONCLUSIONS: [18F]FDG PET/CT could have a role in the assessment of response to immunotherapy in patients with some solid tumors. It can provide prognostic information and thus contribute to a patient's appropriate treatment. Prospective randomized controlled trials are mandatory.

10.
Eur Radiol ; 33(4): 2975-2984, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36512046

RESUMEN

OBJECTIVES: To test reproducibility and predictive value of a simplified score for assessment of extraprostatic tumor extension (sEPE grade). METHODS: Sixty-five patients (mean age ± SD, 67 years ± 6.3) treated with radical prostatectomy for prostate cancer who underwent 1.5-Tesla multiparametric magnetic resonance imaging (mpMRI) 6 months before surgery were enrolled. sEPE grade was derived from mpMRI metrics: curvilinear contact length > 15 mm (CCL) and capsular bulging/irregularity. The diameter of the index lesion (dIL) was also measured. Evaluations were independently performed by seven radiologists, and inter-reader agreement was tested by weighted Cohen K coefficient. A nested (two levels) Monte Carlo cross-validation was used. The best cut-off value for dIL was selected by means of the Youden J index to classify values into a binary variable termed dIL*. Logistic regression models based on sEPE grade, dIL, and clinical scores were developed to predict pathologic EPE. Results on validation set were assessed by the main metrics of the receiver operating characteristics curve (ROC) and by decision curve analysis (DCA). Based on our findings, we defined and tested an alternative sEPE grade formulation. RESULTS: Pathologic EPE was found in 31/65 (48%) patients. Average κw was 0.65 (95% CI 0.51-0.79), 0.66 (95% CI 0.48-0.84), 0.67 (95% CI 0.50-0.84), and 0.43 (95% CI 0.22-0.63) for sEPE grading, CLL ≥ 15 mm, dIL*, and capsular bulging/irregularity, respectively. The highest diagnostic yield in predicting EPE was obtained by combining both sEPE grade and dIL*(ROC-AUC 0.81). CONCLUSIONS: sEPE grade is reproducible and when combined with the dIL* accurately predicts extraprostatic tumor extension. KEY POINTS: • Simple and reproducible mpMRI semi-quantitative scoring system for extraprostatic tumor extension. • sEPE grade accurately predicts extraprostatic tumor extension regardless of reader expertise. • Accurate pre-operative staging and risk stratification for optimized patient management.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Próstata/patología , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Prostatectomía/métodos , Estudios Retrospectivos
11.
Br J Radiol ; 96(1144): 20210270, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367539

RESUMEN

Therapy and prognosis of several solid and hematologic malignancies, including non-small cell lung cancer (NSCLC), have been favourably impacted by the introduction of immune checkpoint inhibitors (ICIs). Their mechanism of action relies on the principle that some cancers can evade immune surveillance by expressing surface inhibitor molecules, known as "immune checkpoints". ICIs aim to conceal tumoural checkpoints on the cell surface and reinvigorate the ability of the host immune system to recognize tumour cells, triggering an antitumoural immune response.In this review, we will focus on the imaging patterns of different responses occurring in patients treated by ICIs. We will also discuss imaging findings of immune-related adverse events (irAEs), along with current and future perspectives of metabolic imaging. Finally, we will explore the role of radiomics in the setting of ICI-treated patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/terapia , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/terapia , Pronóstico , Radiografía , Inmunoterapia/métodos
12.
Diagnostics (Basel) ; 12(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35204320

RESUMEN

This study aims to compare the low-dose computed tomography (LDCT) outcome and volume-doubling time (VDT) derived from the measured volume (MV) and estimated volume (EV) of pulmonary nodules (PNs) detected in a single-center lung cancer screening trial. MV, EV and VDT were obtained for prevalent pulmonary nodules detected at the baseline round of the bioMILD trial. The LDCT outcome (based on bioMILD thresholds) and VDT categories were simulated on PN- and screenee-based analyses. A weighted Cohen's kappa test was used to assess the agreement between diagnostic categories as per MV and EV, and 1583 screenees displayed 2715 pulmonary nodules. In the PN-based analysis, 40.1% PNs were included in different LDCT categories when measured by MV or EV. The agreements between MV and EV were moderate (κ = 0.49) and fair (κ = 0.37) for the LDCT outcome and VDT categories, respectively. In the screenee-based analysis, 46% pulmonary nodules were included in different LDCT categories when measured by MV or EV. The agreements between MV and EV were moderate (κ = 0.52) and fair (κ = 0.34) for the LDCT outcome and VDT categories, respectively. Within a simulated lung cancer screening based on a recommendation by estimated volumetry, the number of LDCTs performed for the evaluation of pulmonary nodules was higher compared with in prospective volumetric management.

13.
Insights Imaging ; 13(1): 6, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032230

RESUMEN

Interstitial lung abnormalities (ILAs) represent radiologic abnormalities incidentally detected on chest computed tomography (CT) examination, potentially related to interstitial lung diseases (ILD). Numerous studies have demonstrated that ILAs are associated with increased risk of progression toward pulmonary fibrosis and mortality. Some radiological patterns have been proven to be at a higher risk of progression. In this setting, the role of radiologists in reporting these interstitial abnormalities is critical. This review aims to discuss the most recent advancements in understanding this radiological entity and the open issues that still prevent the translation from theory to practice, emphasizing the importance of ILA recognition and adequately reporting in clinical practice.

14.
Radiol Med ; 127(3): 294-304, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35041136

RESUMEN

PURPOSE: We investigated whether the additional use of grey-scale inversion technique improves the interpretation of eight chest abnormalities, in terms of diagnostic performance and interobserver variability. MATERIAL AND METHODS: A total of 507 patients who underwent a chest computed tomography (CT) examination and a chest radiography (CXR) within 24 h were enrolled. CT was the standard of reference. Images were retrospectively reviewed for the presence of atelectasis, consolidation, interstitial abnormality, nodule, mass, pleural effusion, pneumothorax and rib fractures. Four CXR reading settings, involving 3 readers were organized: only standard; only inverted; standard followed by inverted; and inverted followed by standard. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy, assessed with the area under the curve (AUC), and their 95% confidence interval were calculated for each reader and setting. Interobserver agreement was tested by Cohen's K test with quadratic weights (Kw) and its 95%CI. RESULTS: CXR sensitivity % for any finding was 35.1 (95% CI: 33 to 37) for setting 1, 35.9 (95% CI: 33 to 37), for setting 2, 32.59 (95% CI: 30 to 34) for setting 3, and 35.56 (95% CI: 33 to 37) for setting 4; specificity % 93.78 (95% CI: 91 to 95), 93.92 (95% CI: 91 to 95), 94.43 (95% CI: 92 to 96), 93.86 (95% CI: 91 to 95); PPV % 56.22 (95% CI: 54.2 to 58.2), 56.49 (95% CI: 54.5 to 58.5), 57.15 (95% CI: 55 to 59), 56.75 (95% CI: 54 to 58); NPV % 85.66 (95% CI: 83 to 87), 85.74 (95% CI: 83 to 87), 85.29 (95% CI: 83 to 87), 85.73 (95% CI: 83 to 87); AUC values 0.64 (95% CI: 0.62 to 0.66), 0.65 (95% CI: 0.63 to 0.67), 0.64 (95% CI: 0.62 to 0.66), 0.65 (95% CI: 0.63 to 0.67); Kw values 0.42 (95% CI: 0.4 to 0.44), 0.40 (95% CI: 0.38 to 0.42), 0.42 (95% CI: 0.4 to 0.44), 0.41 (95% CI: 0.39 to 0.43) for settings 1, 2, 3 and 4, respectively. CONCLUSIONS: No significant advantages were observed in the use of grey-scale inversion technique neither over standard display mode nor in combination at the detection of eight chest abnormalities.


Asunto(s)
Enfermedades Pulmonares , Radiografía Torácica , Humanos , Enfermedades Pulmonares/diagnóstico por imagen , Radiografía , Radiografía Torácica/métodos , Estudios Retrospectivos , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X
15.
Tumori ; 108(1): 86-92, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33730957

RESUMEN

Radiomics has emerged as a noninvasive tool endowed with the potential to intercept tumor characteristics thereby predicting clinical outcome. In a recent study on resected non-small cell lung cancer (NSCLC), we identified highly prognostic computed tomography (CT) -derived radiomic features (RFs), which in turn were able to discriminate hot from cold tumor immune microenvironment (TIME). We aimed at validating a radiomic model capable of dissecting specific TIME profiles bearing prognostic power in resected NSCLC. The validation cohort included 31 radically resected NSCLCs clinicopathologically matched with the training set (n = 69). TIME was classified in hot and cold according to a multiparametric immunohistochemical analysis involving PD-L1 score and incidence of immune effector phenotypes among tumor infiltrating lymphocytes (TILs). High- throughput radiomic features (n = 841) extracted from CT images were correlated to TIME parameters to ultimately define prognostic classes. We confirmed PD-1 to CD8 ratio as best predictor of clinical outcome among TIME characteristics. Significantly prolonged overall survival (OS) was observed in patients carrying hot (median OS not reached) vs cold (median OS 22 months; hazard ratio 0.28, 95% confidence interval 0.09 -0.82; p = 0.015) immune background, thus validating the prognostic impact of these two TIME categories in resected NSCLC. Importantly, in the validation setting, three out of eight previously identified RFs sharply distinguishing hot from cold TIME were endorsed. Among signature-related RFs, Wavelet-HHH_gldm_HighGrayLevelEmphasis highly performed as descriptor of hot immune contexture (area under the receiver operating characteristic curve 0.94, 95% confidence interval 0.81 -1.00; p = 0.01). Based on our findings, Radiomics may decipher specific TIME profiles providing a noninvasive prognostic approach in resected NSCLC and an exploitable predictive strategy in advanced cases.


Asunto(s)
Antígeno B7-H1/genética , Antígenos CD8/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Microambiente Tumoral/genética , Anciano , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Supervivencia sin Enfermedad , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Pulmón/patología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Masculino , Estadificación de Neoplasias , Pronóstico , Tomografía Computarizada por Rayos X , Microambiente Tumoral/inmunología
16.
Diagnostics (Basel) ; 11(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34573951

RESUMEN

Lung cancer (LC) is currently one of the main causes of cancer-related deaths worldwide. Low-dose computed tomography (LDCT) of the chest has been proven effective in secondary prevention (i.e., early detection) of LC by several trials. In this work, we investigated the potential impact of radiomics on indeterminate prevalent pulmonary nodule (PN) characterization and risk stratification in subjects undergoing LDCT-based LC screening. As a proof-of-concept for radiomic analyses, the first aim of our study was to assess whether indeterminate PNs could be automatically classified by an LDCT radiomic classifier as solid or sub-solid (first-level classification), and in particular for sub-solid lesions, as non-solid versus part-solid (second-level classification). The second aim of the study was to assess whether an LCDT radiomic classifier could automatically predict PN risk of malignancy, and thus optimize LDCT recall timing in screening programs. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, positive predictive value, negative predictive value, sensitivity, and specificity. The experimental results showed that an LDCT radiomic machine learning classifier can achieve excellent performance for characterization of screen-detected PNs (mean AUC of 0.89 ± 0.02 and 0.80 ± 0.18 on the blinded test dataset for the first-level and second-level classifiers, respectively), providing quantitative information to support clinical management. Our study showed that a radiomic classifier could be used to optimize LDCT recall for indeterminate PNs. According to the performance of such a classifier on the blinded test dataset, within the first 6 months, 46% of the malignant PNs and 38% of the benign ones were identified, improving early detection of LC by doubling the current detection rate of malignant nodules from 23% to 46% at a low cost of false positives. In conclusion, we showed the high potential of LDCT-based radiomics for improving the characterization and optimizing screening recall intervals of indeterminate PNs.

17.
BJR Open ; 3(1): 20210026, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381953

RESUMEN

Non-cystic fibrosis bronchiectasis represents a heterogenous spectrum of disorders characterised by an abnormal and permanent dilatation of the bronchial tree associated with respiratory symptoms. To date, diagnosis relies on computed tomography (CT) evidence of dilated airways. Nevertheless, definite radiological criteria and standardised CT protocols are still to be defined. Although largely used, current radiological scoring systems have shown substantial drawbacks, mostly failing to correlate morphological abnormalities with clinical and prognostic data. In limited cases, bronchiectasis morphology and distribution, along with associated CT features, enable radiologists to confidently suggest an underlying cause. Quantitative imaging analyses have shown a potential to overcome the limitations of the current radiological criteria, but their application is still limited to a research setting. In the present review, we discuss the role of imaging and its current limitations in non-cystic fibrosis bronchiectasis. The potential of automatic quantitative approaches and artificial intelligence in such a context will be also mentioned.

18.
Rofo ; 193(10): 1153-1161, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33772489

RESUMEN

BACKGROUND: Lung cancer is the most common cause of cancer death worldwide. Several trials with different screening approaches have recognized the role of lung cancer screening with low-dose CT for reducing lung cancer mortality. The efficacy of lung cancer screening depends on many factors and implementation is still pending in most European countries. METHODS: This review aims to portray current evidence on lung cancer screening with a focus on the potential for opportunities for implementation strategies. Pillars of lung cancer screening practice will be discussed according to the most updated literature (PubMed search until November 16, 2020). RESULTS AND CONCLUSION: The NELSON trial showed reduction of lung cancer mortality, thus confirming previous results of independent European studies, notably by volume of lung nodules. Heterogeneity in patient recruitment could influence screening efficacy, hence the importance of risk models and community-based screening. Recruitment strategies develop and adapt continuously to address the specific needs of the heterogeneous population of potential participants, the most updated evidence comes from the UK. The future of lung cancer screening is a tailored approach with personalized continuous stratification of risk, aimed at reducing costs and risks. KEY POINTS: · Secondary prevention of lung cancer by low-dose computed tomography showed a reduction of lung cancer mortality.. · Semi-automated volume measurement and use of volume doubling time should be the reference method for optimization of risks, namely controlling measurement variability and the false-positive rate.. · A conservative approach with surveillance of subsolid nodules can be one of the strategies to reduce the risk of overdiagnosis and overtreatment.. · The goal of a tailored approach with personalized risk stratification aims to reduce costs and risks. A longer interval between rounds is one option for participants at lower risk.. CITATION FORMAT: · Tringali G, Milanese G, Ledda RE et al. Lung Cancer Screening: Evidence, Risks, and Opportunities for Implementation. Fortschr Röntgenstr 2021; 193: 1153 - 1161.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico por imagen , Tamizaje Masivo , Tomografía Computarizada por Rayos X
20.
Radiol Med ; 126(5): 652-660, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33389661

RESUMEN

AIMS: This study aims to investigate whether HS-when associated with an excessive amount of epicardial adipose tissue-correlates with CAD in subjects with symptoms suggestive of CVD. METHODS AND RESULTS: CCTA images, demographic and clinical variables of 1.182 individuals were retrieved: semi-automated measurements for EFV, CAC, and MLD were obtained. Individuals were grouped into three categories according to the presence of CAD, resulting in absent (CAD0), non-obstructive (CAD1) or obstructive (CAD2) disease-groups, and into two categories based on the presence of HS (with no HS, named HS-, and with HS, named HS+). EFV was significantly higher in HS+ than in HS- group (p < 0.001), whereas MLD was lower in CAD+ than in CAD- subjects (p < 0.001). Two predictive models for CAD were tested: the former included clinical risk factors for CAD along with age, gender, EFV and MLD, whereas the latter did not include clinical variables. The logistic regression analysis of the second proposed model reliably discriminated CAD0 from CAD1 and CAD2 (AUC of 0.712, range 0.682-0.742). CONCLUSION: Lower MLD was associated with increased EFV, and MLD-as a marker of HS-discriminate symptomatic patients with CAD from whom without.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Hígado Graso/complicaciones , Hígado Graso/diagnóstico por imagen , Pericardio/diagnóstico por imagen , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Interpretación de Imagen Radiográfica Asistida por Computador , Sistema de Registros , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...